5-2 More RNNs

Zhonglei Wang WISE and SOE, XMU, 2025

Contents

- 1.GRU
- 2.LSTM

GRU

- 1. It is short for a gated recurrent unit (Cho et al., 2014)
- 2. It can capture dependence of various time scales by a reset gate and an update gate

[Cho, K., van Merrienboer, B., Bahdanau, D. and Bengio, Y.(2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.]

Wang, Z. (WISE & SOE, XMU) 5-2 More RNNs

Reset gate

- 1. Reset gate controls how much we forget the past
- 2. Reset gate consists of
 - $\Gamma_r^{\langle i \rangle} = \sigma \left\{ \mathbf{W}_r \left(\mathbf{x}^{\langle i \rangle^{\mathrm{T}}}, \mathbf{a}^{\langle i-1 \rangle^{\mathrm{T}}} \right)^{\mathrm{T}} + \mathbf{b}_r \right\}$: of the same dimension as $\mathbf{a}^{\langle i-1 \rangle}$
 - $\tilde{\boldsymbol{a}}^{<i>} = \tanh \left\{ \boldsymbol{W} \left(\boldsymbol{x}^{<i>}^{\mathrm{T}}, \left(\boldsymbol{\Gamma}_{r}^{<i>} \circ \boldsymbol{a}^{<i-1>} \right)^{\mathrm{T}} \right)^{\mathrm{T}} + \boldsymbol{b} \right\}$
 - $\Gamma_r^{< i>}$ controls how much we "forget" the past when obtaining $\tilde{a}^{< i>}$
- 3. Model parameters:
 - W_r, b_r for the reset gate $\Gamma_r^{< i>}$
 - W, **b** for obtaining $\tilde{a}^{< i>}$

Update gate

- 1. Update gate aggregate information to obtain $a^{\langle i \rangle}$
- 2. Reset gate consists of

•
$$\Gamma_u^{\langle i \rangle} = \sigma \left\{ \mathbf{W}_{\mathbf{u}} \left(\mathbf{x}^{\langle i \rangle^{\mathrm{T}}}, \mathbf{a}^{\langle i-1 \rangle^{\mathrm{T}}} \right)^{\mathrm{T}} + \mathbf{b}_{\mathbf{u}} \right\}$$
: of the same dimension as $\mathbf{a}^{\langle i-1 \rangle}$

- $a^{< i>} = (1 \Gamma_u^{< i>}) \circ a^{< i-1>} + \Gamma_u^{< i>} \circ \tilde{a}^{< i>}$
- $A \circ B$: Hadamard matrix production of two matrices A and Bofthesamedimension
- 3. Model parameters:
 - W_u, b_u for the update gate $\Gamma_u^{< i>}$

Flowchart

- 1. It is short for a long short-term memory unit
- 2. It allows for capturing dependence of various time scales using an update gate, a forget gate and an output gate
- 3. First generate a candidate activation

$$\tilde{\boldsymbol{c}}^{} = anh\left\{ \boldsymbol{W}_c \left(\boldsymbol{x}^{^{\mathrm{T}}}, \boldsymbol{a}^{^{\mathrm{T}}} \right)^{\mathrm{T}} + \boldsymbol{b}_c \right\}$$

1. An input gate is

$$\Gamma_i^{< i>} = \sigma \left\{ \mathbf{W}_i \left(\mathbf{x}^{< i>^{\mathrm{T}}}, \mathbf{a}^{< i-1>^{\mathrm{T}}} \right)^{\mathrm{T}} + \mathbf{b}_i \right\} \text{ of the same dimension as } \mathbf{c}^{< i-1>}$$

2. A forget gate is

$$\mathbf{\Gamma}_f^{< i>} = \sigma \left\{ \mathbf{W}_f \left(\mathbf{x}^{< i>^{\mathrm{T}}}, \mathbf{a}^{< i-1>^{\mathrm{T}}} \right)^{\mathrm{T}} + \mathbf{b}_f \right\} \text{ of the same dimension as } \mathbf{c}^{< i-1>}$$

3. Both gates are used to obtain an activation

$$oldsymbol{c}^{< i>} = oldsymbol{\Gamma}_i^{< i>} \circ ilde{oldsymbol{c}}^{< i>} + oldsymbol{\Gamma}_f^{< i>} \circ ilde{oldsymbol{c}}^{< i-1>}$$

4. Thus, the memory can be "erased" by the forget gate $\Gamma_f^{\langle i \rangle}$

1. An output gate is

$$\Gamma_o^{< i>} = \sigma \left\{ W_o \left(\boldsymbol{x}^{< i>^{\mathrm{T}}}, \boldsymbol{a}^{< i-1>^{\mathrm{T}}} \right)^{\mathrm{T}} + \boldsymbol{b}_o \right\} \text{ of the same dimension as } \boldsymbol{c}^{< i-1>}$$

2. The output gate is used to obtain

$$oldsymbol{a}^{< i>} = oldsymbol{\Gamma}_o^{< i>} \circ oldsymbol{c}^{< i>}$$

- 3. Thus, the memory can be further "controlled" by the output gate $\Gamma_o^{< i>}$
- 4. Initialize $a^{<0>} = c^{<0>} = 0$

- 1. Model parameters are
 - W_c, b_c for the candidate activation
 - W_i, b_i for the input gate
 - W_f, b_f for the forget gate
 - W_o, b_o for the output gate

Flowchart

Possibly loss function

Deep RNN

1. We can stack the structure vertically to get a deeper RNN

Wang, Z. (WISE & SOE, XMU) 5-2 More RNNs